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ABSTRACT 
Following the results obtained by Marchuk et al. concerning the variational principles for kinetic equations, 
a hierarchical finite element method is proposed for solving the two-dimensional neutron transport equation. 
The combination of mesh refinement with additional basis functions leads to an accurate and efficient 
iterative solution of the resulting block linear systems. Numerical results are provided to illustrate the 
efficiency of the method. 
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INTRODUCTION 
The hierarchical finite element method (HFEM), proposed in the early 1970s, is now widely 
used in engineering computations1-5. It has been shown that as a tool for computation, the 
HFEM improves the accuracy of the finite element mesh4. The specificity of this method lies in 
the adaptive choice of the interpolation space by successive approximations. It has also been 
shown that for the p version of the finite element method a stable process is obtained for 
hierarchical basis functions that are normalized and almost orthogonal in energy7-12. 

In this paper we propose a HFEM for the neutron transport equation which has numerous 
applications in nuclear engineering, meterology, biology, etc. Numerical problems involving the 
neutron transport equation are generally arduous because of their multi-dimensionality, the lack 
of smoothness of- the solutions, asymmetry of operators and a number of other singularities. 
The intensive development of transport computations began in the early 1950s and now 
constitutes an independent branch of applied mathematics13-16. When applied to the neutron 
transport problem, the HFEM produces for every new hierarchical space Vi a matrix with 
desirable properties: symmetry, positive definiteness, diagonal dominance, and block-structure. 
This permits use of a large spectrum of efficient numerical methods to minimize the cost of 
processing, which escalates rapidly with the introduction of new hierarchical spaces if appropriate 
techniques are not used. We focus on the stationary two-dimensional neutron transport equation. 
From the results obtained by Marchuk et al.17 we propose an application of the HFEM based 
on the Ritz variational method. This results in a familiar block system of linear algebraic equations 
which are solved iteratively, using a SOR method with relaxation parameter optimization. 
Numerical results focusing mainly on the methods rather than on the physics of the problem 
are provided to illustrate the advantages of the HFEM. 
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VARIATIONAL FORMULATION 
Consider the following boundary value problem for the neutron transport equation13, 

where, 
D is a convex bounded domain of R2 with a smooth boundary, ∂D 

is the unit vector of the outer normal to ∂D 

is a unit vector that assumes values on a unit circle centred at the origin 

Let Ω = ]0,2π[ and: 

We introduce, 

Furthermore, we assume that: f,φεL(D × Ω) and σ,σsεL2(D). As proposed by Marchuk 
et al.17 we introduce a function space, 

In the Hilbert space W1 a variational Ritz formulation is obtained after rendering symmetric 
the operator in (1)13. The energy function J(φ) is given by17, 

where, 
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and B is a linear operator defined as follows, 

Let, 

Then, the boundary value problem (1) is equivalent to the following extremal problem, 

HIERARCHICAL FINITE ELEMENT FORMULATION 
Basic equations 

Let, 

be a system of spatial finite element basis functions. 
P1 denotes the set of two-variable polynomials of degree one, and Φjx is an element of P1. 

On a nodal point ai we have, 

where δij is the Kroneker delta. The (Φij are the nodal variables. Let, 

The flux φ(x1,x2,θ) may be approximated by the product, 

φi(θ), 1≤ i ≤N are the basic functions in angular variable. 
φ(x1 x2,θ) is a solution of (5) if and only if: 

The system (9) may then be written as: 

where the Ai,l (1≤ i ≤ N, 1 ≤l ≤ M) are m × m matrices. 
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Theorem 1. The following properties are characteristic of the system stiffness matrix defined 
in (10): 

(a) Ai,l = A1,l (11) 

(b) Ail = Atil 
(c) if the Φt(θ) are three-nodal approximation functions then system (10) is block-tridiagonal, 
(d) the matrices Aa are positive definite, 
(e) all the matrice Ail are invertible. 
Proof. Properties (a), (b), (d) and (e) follow from the fact that [.,.] in (a) is a scalar product. 

To prove (c) note that if the Φl(θ) are three-nodal approximation functions, then the supports 
K1 of the functions Φt are such that, 

In this case the sets (Ki∩ Kj) × D and (Ki∩ Kj) × ∂D are empty. 
Thus, 

Therefore, for a given i only the following matrices are not nul: 

Thus the system (10) is block-tridiagonal. 

Hierarchical formulation for the angular variable 
We approximate the function in the interval [0,2π] with, 

where Φib denotes the three-nodal reference element basic functions and the Φih are the hierarchical 
basic functions. Let: 

Φ1(ε) = 1 — ε on the reference element (0,1) 

Φ2(ε) = 1 — |ε| on the reference element ( — 1,0,1) 
Φ3(Ε) = ε on the reference element (0,1) 

Furthermore, we let 

be the set of reference functions from which the basic functions are constructed. Now consider 
new reference functions Φ4, Φ5 defined on the reference element ( — 1,0,1) as follows, 
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Let 

be the class of reference functions from which the hierarchical space of order i is constructed. 
Then from (13), system (10) may be partitioned as follows, 

or in matrix form, 

where and are the nodal variables relative to the basic functions and the hierarchical 
functions, respectively. and are the corresponding forcing vectors: 

The matrix AH has the following properties. 

Theorem 2. 

(i) Abb is block-tridiagonal, symmetric and positive definite 
(ii) Abh = Athb 

(iii) Ahh is block-tridiagonal, symmetric and positive definite. 

These properties follow from the properties of the scalar product [ . , . ] . Therefore matrix AH is 
block-tridiagonal, positive definite and has diagonal dominance. This makes it particularly 
attractive to use iterative methods for solving system (15). 

If several refinements by hierarchical functions are made then system (15) may be further 
partitioned. As an example for a basic discretization involving k basic functions and two 
refinements involving s and t hierarchical functions respectively, the resulting system is, 

Determination of the elements of the matrix Aj,1 

We begin by making the following definitions. Let: 

Ωi be the support of the function Ωi; 
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It can be verified that, 

NUMERICAL SOLUTION OF HIERARCHICAL SYSTEMS 
In a sequence of m hierarchical spaces, we have to solve (m + 1) systems of equations of the 
type shown in (15). However, we are interested only in the solution to the last system. By 
adaptively constructing the final interpolation space, we find approximate solutions to the first 
m systems. This solution process may be costly if appropriate powerful algorithms are not 
involved. The system corresponding to the basic approximation in the hierarchical space V0 is: 

Let be the solution of (17) obtained by the cyclic reduction method19. In the ith hierarchical 
space Vi (i > 0), the equations is partitioned as follows, 

Let be an initial approximation for obtained from the system, 

where Dhh is a matrix consisting of diagonal blocks of Ahh, with 0bh the null matrix. We then 
have the following approximate initial solution for the system (18): 

where, 

It is obvious that the solution in (17) will, in general, differ from in (18) because of the 
connection matrix Abh. But if (17) is solved and an appropriate number of hierarchical functions 
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are included in the finite element discretization, then we expect that the available solution will 
be a good approximation for in (18). We now apply a SOR algorithm to the system (18), 
formally written as: 

Let, 
U = (U1, U2,..., UN)t be the exact solution to (21) 

and U(n) its approximation at iteration n. The relation for the SOR method is the following: 

Now let, 

be the difference vector, w the relaxation parameter, I the unity matrix and 

the iteration matrix. The method converges if and only if 0 < w < 2. The problem of the rate 
of convergence is posed in terms of determining an optimal parameter such that 

where p(T) is the spectral radius of T. We define a vector norm 

The procedure used involves three steps: 
(a) Compulation of a new estimation of 

Suppose the Jacobi method is used for system (21). Then the iteration matrix is B = D-1(L + U) 
and its eigenvalues μi are real and such that18: 

Let w1 be the current estimation of A new approximation ω of is computed from: 

where is an approximation of μ1 given by: 

Here, 
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(b) Validation of new estimation of 
Let w be a new approximation of computed from (24). This new value is accepted if: 

F = 0,73 

(c) Termination criterion 
The termination criterion used for stopping the iteration is the following: 

(a) w < W1 

where 

(b) w ≥ w1 

Now, a new hierarchical function Φk(θ) is introduced. It follows from a variation of the energy 
functional: 

where 

A(j)ik is the jth line of the matrix Ai,k 

and 

Therefore the algorithm for construction of the hierarchical spaces is as follows: 
Given a function Φk(θ), compute 

Define 

The function φk(θ) is introduced if: 
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NUMERICAL RESULTS 
As a simple application, we consider a boundary value problem for a stationary two-dimensional 
neutron transport equation in the case of isotropic scattering, with an anisotropic source and 
vacuum boundary conditions: 

and, 

where, 

We focus on the performance of various methods for solving the resulting block linear systems, 
rather than on the physical aspects of the problem. Several iterative algorithms were used to 
solve the test problem, with a view to evaluating their efficiency. These are: the Jacobi, the 
Gauss-Seidel (SEIDEL), the adaptive Jacobi (JA), the SOR and the SOR with adaptation of 
the relaxation parameter (SORA) methods. 

The results clearly show the advantage of the HFEM discretization as compared to a 
non-hierarchical finite element approach (FEM). Table 1 shows that the SORA method leads 
to the fastest rate of convergence of the radio R(n) = ∂(n)/∂(n-1) towards λ1 the spectral radius 
of the iteration matrix. This is due to the good initial approximations obtained from (17) and 
(19), and the minimal effect on the solution to the problem, of introducing new hierarchical 
functions beyond a certain point. 

Table 2 shows similar results in the case of FEM. These results are in agreement with those 
presented in Hageman and Young18, and show that the spectral radius of the iteration matrix 
decreases with the introduction of new hierarchical basis functions, up to a point. This in turn 
leads to faster convergence towards a solution, as can be seen from Table 3. 

Table 1 Estimation of the spectral radius of the iteration 
matrix by different iterative methods using a HFEM 

Method 

SOR w = 1.9 
SEIDEL 
Jacobi 
JA 
SORA 

Number of iterations 

30 

0.900377 
0.910471 
0.930842 
0.770088 
0.694617 

40 

0.871481 
0.887817 
0.918112 
0.730181 
0.694602 

60 

0.860081 
0.844671 
0.880014 
0.710394 
0.694602 



TWO-DIMENSIONAL NEUTRON TRANSPORT EQUATION 45 

Table 2 Estimation of the spectral radius of the iteration 
matrix for different iterative methods in the case of a FEM 

Number of iterations 

Method 

SOR w = 1.9 
SEIDEL 
Jacobi 
JA 
SORA 

40 

0.98976 
0.98675 
0.99213 
0.96728 
0.96702 

80 

0.98021 
0.970929 
0.98513 
0.96649 
0.96223 

120 

0.97512 
0.96099 
0.97928 
0.96412 
0.96217 

Table 3 Comparison of number of iterations necessary for 
convergence (μ = 0.0001) in the case of HFEM and FEM 

Method 

SOR w = 1.9 
SEIDEL 
Jacobi 
JA 
SORA 

Number of iterations 

FEM 

179 
186 
201 

92 
77 

HFEM 

121 
113 
126 
42 
31 

Figure 1 illustrates the efficiency of the HFEM. It shows, for the case of the SORA algorithm 
the convergence of R(n) towards a stationary value, theoretically equal to λn the spectral radius 
of the iteration matrix. It is readily seen that the rate of convergence is fastest and monotone 
when hierarchical basis functions are introduced (graphs A and C). Convergence is towards the 
value λ1 = 0.6946. When non-hierarchical basic functions are used, the rate of convergence is 
slower and convergence is towards the higher value of λ1 = 0.864 (graph B). Observe also that 
the introduction of new hierarchical basic functions does not affect the rate of convergence after 
a certain threshold is reached. This is clear from graph A (8 functions) and graph C (16 functions) 
which are practically the same. 

Figures 2 and 3 show, for two distinct values of θ (θt = 3π/2,θ2 = π/2) the distribution in 
the x-y geometry of the neutron flux obtained from the solution of the test problem. As the 
source is anisotropic, the flux distribution is directly linked to the angle. The agreement between 
these solutions and expected results (from the physics of the situation) show that the HFEM is 
an efficient method for solving the neutron transport problem. 
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CONCLUSION 
This paper has shown that the application of the HFEM to the neutron transport equation 
leads to block-systems of linear equations with desirable properties: positive definiteness, 
symmetry, diagonal dominance. These properties are conducive to the application of iterative 
methods for the solution of the HFEM mesh equations. 

Numerical examples presented show the efficiency of the adaptive SOR method compared to 
other iterative algorithms (JACOBI, JA, SOR, SEIDEL). Because of the reduction of the spectral 
radius of the iteration matrix in the case of a HFEM, the convergence to the solution by iterative 
methods is faster than in the case of a non-hierarchical basis. This feature of the method is 
particularly useful in solving the neutron transport equation. 
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